Diffractive elements performance in chromatic confocal microscopy
نویسندگان
چکیده
منابع مشابه
Diffractive lenses for chromatic confocal imaging.
A diffractive zone plate provides a highly linear wavelength-to-depth coding, allowing for nonmechanical depth scanning in a confocal microscope. This chromatic confocal microscope, constructed with 40x and 60x objectives, achieves axial position changes of 55 and 25 mum, respectively, for a wavelength tuning range of 100 nm. The corresponding longitudinal point-spread functions are measured an...
متن کاملMulti-mode Microscopy Using Diffractive Optical Elements
This paper discusses a range of phase-diversity and tracking applications that have been demonstrated experimentally, and will present an analysis of experimental errors associated with the system used. Simultaneous imaging in multiple imaging modes is demonstrated and the use of wavefront-sensing techniques to achieve nanometric depth resolution is reviewed.
متن کاملChromatic Confocal Electron Microscopy with a Finite Pinhole Size
Scanning confocal electron microscopy (SCEM) is a new imaging mode in electron microscopy. Spherical aberration corrected electron microscope instruments fitted with two aberration correctors can be used in this mode which provides improved depth resolution and selectivity compared to optical sectioning in a conventional scanning transmission geometry. In this article, we consider the depth res...
متن کاملChromatic confocal microscopy for multi-depth imaging of epithelial tissue
We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light dete...
متن کاملThree-dimensional image sensing by chromatic confocal microscopy.
In the image of a confocal microscope, only those parts of an object appear bright that are located in the focal plane of the objective. Because of an axial chromatic aberration deliberately introduced into the microscope objective, the location of the focal plane depends on the wavelength used. By using a white-light source and examining an object with a depth variation less than the axial ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2011
ISSN: 1742-6596
DOI: 10.1088/1742-6596/274/1/012069